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Abstract. We describe the changes and the destruction of islands of stability in four dynamical
systems: (a) the standard map, (b) a Hamiltonian with a cubic nonlinearity, (c) a Hamiltonian with
a quartic nonlinearity and (d) the Sitnikov problem. As the perturbation increases the size of the
island increases and then decreases abruptly. This decrease is due to the joining of an outer and an
inner chaotic domain. The island disappears after a direct (supercritical) or an inverse (subcritical)
bifurcation of its central periodic orbitC. In the first case, whenC becomes unstable, a chaotic
domain is formed nearC. This domain is initially separated from the outer ‘chaotic sea’ by KAM
curves. But as the perturbation increases the inner chaotic domain grows outwards, while the outer
‘chaotic sea’ progresses inwards. The last KAM curve is destroyed by forming a cantorus and the
two chaotic domains join. But even then the escape of orbits through the cantorus takes a long time
(stickiness effect). In the inverse bifurcation case the island around the central orbit is limited by
two equal period unstable orbits. As the perturbation changes these two orbits approach and join
the central orbit, that becomes unstable. Then the island disappears but no cantori are formed. In
this case the stickiness is due to the delay of deviation of an orbit from the unstable periodic orbit
when its eigenvalue is not much larger than 1.

1. Introduction

Islands of stability appear generically in conservative dynamical systems. Even when chaos is
dominant, in most cases there are stable periodic orbits surrounded by small islands of stability.
As an example we consider islands of stability in the well known standard map

xi+1 = xi + yi+1

yi+1 = yi +
K

2π
sin(2πxi)

 (mod 1) (1)

whereK is the nonlinearity parameter (section 2). We will also discuss briefly the islands of
stability on a Poincaŕe surface of a section of the Hamiltonians:

H ≡ 1
2(ẋ

2 + ẏ2 + ω2
1x

2 + ω2
2y

2)− εxy2 = h (2)

and

H ≡ 1
2(ẋ

2 + ẏ2 + x2 + y2) + εx2y2 = h (3)

for fixed energy and varying nonlinearityε (sections 3 and 4), and in the Sitnikov problem for
varying eccentricitye of the primaries (section 5).

The problem is how the islands of stability that exist for a given nonlinearity parameter
are destroyed asK, ε or e, changes.

We will see that there are two main mechanisms for the destruction of the islands of
stability.
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(1) The stable periodic orbit at the centre of the island becomes unstable, by an equal period
or a period doubling bifurcation. Then a chaotic domain is produced around it, which
increases outwards. Finally, the large chaotic sea outside the island and the inner chaotic
domain at the centre merge and the island is destroyed.

(2) The island is limited on the outside by two equal or double period unstable periodic orbits
that come closer and closer to the centre of the island. These unstable periodic orbits are
followed by chaotic domains. When they merge, the stable periodic orbit at the centre of
the island becomes unstable, and the outer chaotic domains join into a large chaotic sea.

These two cases correspond to direct and inverse pitchfork bifurcations, respectively
(Contopoulos 1983a). The two types of bifurcations correspond to supercritical and subcritical
pitchfork bifurcations, respectively (Argyriset al1994). In the first case the bifurcating family
(of equal or double period) is stable, and appears on the side where the original family is
unstable. In the second case the bifurcating family is unstable and appears on the side where
the original family is stable. In this paper we consider examples of type (1) when the stable
orbits become unstable by increasing the perturbation, and examples of type (2) when the
stable orbits become unstable by decreasing the perturbation.

A detailed theoretical exploration of the various types of bifurcations is provided by Hénon
(1965) and by Contopoulos (1970, 1983b).

2. The evolution of the main island in the standard map

It is well known that the standard map forK larger than a critical valueKcrit = 0.97 does not
have invariant curves extending all the way fromx = 0 to x = 1. For largerK, but smaller
thanKcc = 4 there is a major island around the stable periodic orbit (x = 0.5, y = 0). This
island is split into two forK larger thanKcc.

In this paper we will follow the evolution of one of these two islands forK > 4.75 until
it is destroyed forK at about 6.34.

We call this island the ‘main island’.
The structure of an island is well known. It consists of invariant curves surrounding a

stable periodic orbit and a hierarchy of secondary islands. For example, figure 1 gives the main
island forK = 4.75. The most important secondary islands are those with rotation number

Figure 1. The main island forK = 4.75. We see inside the last KAM secondary islands
corresponding to the resonance 3/5.
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3/5. These are surrounding a stable periodic orbit of type 3/5, i.e. consisting of five stable
points, say 1 2 3 4 5,visited in the sequence 1 4 2 5 3 1. . .clockwise. (If we consider the
successive points counterclockwise the same orbit is called type 2/5. For consistency with the
other types of orbits we adopt here the rotation is clockwise).

Between the five islands there is an unstable periodic orbit, also of type 3/5. There are
many more chains of islands that are not marked in figure 1, as well as islands of higher order
around the five islands, forming a hierarchical structure.

The island is limited by a ‘last KAM curve’ and beyond it there is a large ‘chaotic sea’,
i.e. a large connected chaotic domain.

Inside the last KAM curve there are small domains of chaos around each unstable periodic
orbit, but these chaotic domains do not communicate with the outer ‘chaotic sea’.

However, asK increases, the last KAM curve is destroyed, i.e. it becomes a cantorus
(Aubry 1978, Percival 1979) with infinite gaps, allowing the communication of the inner
chaotic domains with the outer ‘chaotic sea’. Thus the size of the island decreases abruptly
at a critical valueK = Kc. But forK slightly above the critical valueKc the communication
through the cantorus takes a long time. During that time orbits starting inside the cantorus are
stuck inside it and only later escape to the outer chaotic sea. The phenomenon of stickiness
was observed first by Contopoulos (1971) and given that name by Shirts and Reinhardt (1982).

The crossing of a cantorus is usually considered by calculating orbits in the standard map,
starting inside the cantorus, until one point is outside the cantorus. Then one can calculate the
diffusion through the cantorus (Chirikov and Shepelyansky 1984, Dana and Fishman 1985,
Meiss and Ott 1986). A more detailed way to see the crossing of a cantorus is by calculating
an unstable asymptotic curve from an unstable periodic orbit, close, but inside the cantorus,
until this curve crosses a gap of the cantorus (Efthymiopouloset al 1997). Actually, such an
asymptotic curve crosses the cantorus many times outwards and inwards before going far away
from the cantorus into the large ‘chaotic sea’.

The size of an island can be found if we know the last KAM curve around it. A method
to find accurately the KAM curves in an island of stability has been developed by Voglis and
Efthymiopoulos (1998) and by Vogliset al (1998). This method is based on the calculation
of the rotation angles,θ , around the centre of the island, and of the ‘twist angles’,φ, between
the deviationsξi andξi+1 from successive iterates of the map. The average values ofθ andφ
give two frequenciesνθ andνφ .

If an orbit forms a closed invariant curve around the centre of the island, the two frequencies
are equal

νθ = νφ. (4)

In the case of a secondary island the value ofνθ is constant, whileνφ varies smoothly
taking locally a U-form or an inverse U-form. The local minimum or maximum corresponds
to the centre of the secondary island. The differenceνκ = νφ − νθ is the ‘epicyclic frequency’
of the secondary island.

In the case of chaotic orbits the difference between the twist and rotation frequencies
νφ − νθ varies wildly.

The accuracy of determiningνκ is of order O(1/N). In the case of KAM curves that close
around the centre of the islandνκ = 0 + δ/N , where 0< δ < 1 (1 means a complete cycle).
Thus the quantityR = [Nνκ ] (the integer part of the product of the number of iteration times
the epicyclic frequency) is exactly zero on such KAM curves while it tends to infinity in all
ather cases, i.e. in higher order islands or in chaotic orbits. The indexR is called ROTOR
(ROtational TOri Recognizer). The size of an island is determined by the last point along an
axis from the centre of the island, at whichR is zero.
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Figure 2. The size of the island (distance along thex-axis from the central periodic orbit to the last
KAM curve on the left. We see the large variations of this distance whenever a last KAM curve is
destroyed. The size of the island becomes zero at the bifurcation of the 1/3 resonance (K ≈ 5.66)
and forK = 6.3345 and beyond.

In figure 2 the size is measured along a liney = yp from the central periodic orbit (xp, yp)
up to the last KAM curve (last KAM torus) to the left (x < xp) surrounding the island, and we
plot the value of|x− xp| as a function ofK. Diagrams giving the approximate distance of the
last KAM curve from the central periodic orbit were given by various authors (e.g. Schmidt
and Bialek 1982).

According to Greene (1979) and Percival (1982) the last KAM invariant curve to be
destroyed has a ‘noble’ rotation number. Namely the rotation numbera, written as a continued
fraction,

a = [a1, a2, . . .] = 1

a1 +
1

a2 + · · ·
(5)

hasai equal to 1 above a certain order (i > N ).
The last KAM curve surrounding the five islands of figure 1 has rotation number equal

to the ‘golden number’a = [1, 1, 1 . . .] which is the simplest noble number. The successive
truncations of this number are 1/2, 2/3, 3/5, 5/8, 8/13. . . and for each successive higher order
truncation, they correspond to periodic orbits, which are alternatingly inside and outside the
cantorus. For example, the periodic orbits 8/13 are inside the cantorus and closer to it than the
periodic orbits 3/5. The orbits 2/3,5/8 are outside the cantorus, the second one being closer to
the cantorus than the first.

The transition valueKc for the destruction of the torus [1, 1, 1 . . .] is close toK = 4.79.
ForK larger thanKc the size of the island is limited by another last KAM curve, inside

the 3/5 periodic orbits. AsK increases, the size of this last KAM curve increases (figure 2).
But when this size becomes maximum the new last KAM curve is also destroyed and the size



Destruction of islands of stability 5217

of the island decreases again (see the drops of the curve of figure 2 at the resonances 3/5, 4/7,
1/2, 3/7, 2/5, 1/3, 1/4, 1/5 etc).

Then another last KAM curve takes over and so on.
The curve of figure 2 has in fact infinite intervals where it increases on the average, with

infinite abrupt decreases. In fact this curve is like the Weierstrass curve, which does not have
a derivative at any point.

The increase in size of the islands is due to the pushing outwards of the various invariant
curves with given rotation number. In fact, asK increases, new invariant curves are formed
around the central periodic orbit with smaller and smaller rotation numbers.

When the rotation number goes through a rational number a new couple of periodic orbits
(one stable and one unstable ) bifurcates in general†.

This set moves outwards asK increases further and comes near the border of the island.
Eventually the last KAM curve changes and comes inside this set of islands, that are now left
in the large ‘chaotic sea’.

In figure 2 we have marked the most important resonances, that produce large reductions
of the size of the main island. We have not marked the higher order resonances that produce
the secondary variations of the size of the main island.

In a previous paper (Efthymiopouloset al 1997) we have examined the destruction of the
noble KAM tori close toa = [2, 1, 1 . . .] in detail. There we had used counterclockwise
rotation numbers which are complementary to our present clockwise rotation numbers.
Therefore the previousa = [2, 1, 1 . . .] corresponds to our presenta = [1, 1, 1 . . .] =
1− [2, 1, 1 . . .].

By comparing figures 11 and 12 of that paper, forK = 4.791 and 4.793 respectively,
we see that the noble KAM curve [2, 1, 1 . . .] has been destroyed already forK between 4.79
and 4.791. But there are other KAM tori inside it forK = 4.791 namely [2, 1, 1, 2, 1 . . .],
[2, 1, 1, 3, 1 . . .] and [2, 1, 1, 4, 1 . . .].

The noble torus [2, 1, 1, 5, 1 . . .] and other noble tori have been already destroyed.
Then for K = 4.793 the noble tori [2, 1, 1, 2, 1 . . .] and [2, 1, 1, 4, 1 . . .] are also

destroyed, while the torus [2, 1, 1, 3, 1 . . .] still exists. Finally, forK = 4.794 this torus
is also destroyed.

We conclude: (a) that the last KAM torus has not the simplest noble rotation number, and
(b) the destruction of noble tori proceeds both from outside inwards and from inside outwards.
The abrupt decrease of the size of the island occurs when not only the torus [2, 1, 1, . . .] but
also the nearby tori are destroyed.

From now on we will again use clockwise rotation numbers. Figure 3 shows the form of
the island forK = 4.9, near the maximum size of the last KAM curve with rotation number
a = [1, 1, 2, 1, . . .]. Inside this curve there are seven islands corresponding to the stable
periodic orbit 4/7.

The islands 3/5 still exist, but they are much smaller than in figure 1, and they are embedded
in the large ‘chaotic sea’.

Similar processes occur around most transitions through the minima of the curve of
figure 2.

In particular, a dramatic reduction of the size of the island, appears when the last KAM
curve surrounding the two sets of islands of type 1/2 is destroyed (notice that in this case the
four islands surround two different stable periodic orbits, each of type 1/2 ; there are also two
unstable periodic orbits of type 1/2). The transition between figures 4 and 5 corresponds to
points on both sides of the minimum of the curve of figure 2 nearK = 5.085.

† Two couples of periodic orbits bifurcate in some cases (see figure 4).
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Figure 3. The main island forK = 4.9. The five islands
of the orbit 3/5 are now in the ‘chaotic sea’, while the
islands of the resonance 4/7 are inside the corresponding
last KAM curve.

Figure 4. The main island forK = 5.08. It contains
two sets of two islands corresponding to the resonance
1/2 inside the last KAM curve.

Figure 5. The main island forK = 5.09 is considerably
smaller than in figure 5, while the two sets of two islands
are now in the ‘chaotic sea’.

Figure 6. The main island forK = 5.58 is very small. It
is limited by a triple unstable orbit, while a stable orbit 1/3
and a set of three islands is further away.

AsK increases beyond 5.085 the size of the island increases and reaches a maximum near
|x−xp| = 0.038. But this is much smaller than the previous maximum, near|x−xp| = 0.05,
for K near 5.

Then we have one more drastic reduction of the size of the island, but not abrupt, as in the
previous cases. This reduction leads to the vanishing of the island forK ≈ 5.66.

As we approach this limiting case (figure 6 forK = 5.58) the size of the central island is
reduced, while three secondary islands corresponding to the resonance 1/3 surround it. These
islands are in the large ‘chaotic sea’. The central island is limited by three unstable periodic
orbits.

In figure 7 (K = 5.74) we see that the form of the island is different. The three unstable
periodic orbits that limit the island now have a different orientation. In fact the vanishing of
the central island occurs when the three unstable points of figure 6 move inwards and join at
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Figure 7. The main island forK = 5.74 is limited by a
triple unstable orbit, but the position of this 1/3 orbit is
different from that of figure 7. The stable 1/3 orbit has
just become unstable.

Figure 8. ForK = 6.34 the central periodic orbit C is
unstable. Two islands of stability on the left and on the
right of C, have been produced by bifurcation from C.
There is no island surrounding both islands, but only a
sticky chaotic zone around C, and around both islands.
This chaotic zone communicates with the outer large
‘chaotic sea’. Some higher order islands are marked.

the centre. Then they are again separated, moving away from the centre asK increases. The
outer islands have now become unstable.

Thus the central orbit is unstable only for one critical value ofK ≈ 5.66.
This phenomenon is well known (Contopoulos 1968). The triple periodic orbit, that

bifurcates from the central orbit at the critical value ofK, is unstable on both sides of the
bifurcation.

For still largerK the size of the island reaches another maximum, near|x − xp| = 0.018,
much smaller than the previous maximum 0.038. Beyond that value ofK the size of the island
in general decreases until it becomes abruptly zero forK = Kc = 6.3346 and remains zero
for largerK.

As we approach the limiting valueK = Kc the central periodic orbit becomes unstable
by a period doubling bifurcation, generating two stable islands, on each side of it (figure 8, for
K = 6.34). The bifurcation occurs atKb ≈ 6.28.

For a value ofK smaller thanKb the central periodic orbit is surrounded by invariant curves
and periodic orbits with rotation numbers small positive, but not reaching zero. For example,
in figure 9 forK = 6.28 inside the last KAM curve we see islands with rotation number
νθ = 1/8, 1/9 . . . , up to 1/25 (in the cases of order 17 and higher only the periodic orbits
are marked). This sequence reaches a minimum rotation number at the central periodic orbit
(marked C in figure 9) which is slightly above zero. In the whole region inside the last KAM
curve there is a little chaos around each unstable periodic orbit, but this is not conspicuous.

However, after the central periodic orbit C becomes unstable a chaotic domain develops
around it and the sequence of invariant curves around C, terminates on the inner side at a certain
distance from C, defined by a ‘first’ KAM curve between the first and the last KAM curves
there are infinitely more KAM curves and infinitely higher-order islands. AsK increases the
first and the last KAM curves approach each other.

ForK = 6.334 (figure 10) both the first and the last KAM curve are between the resonances
1/16 and 1/17, and forK = 6.34 (figure 8) all the KAM curves around C have been destroyed.
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Figure 9. The region above the central
periodic orbit C forK = 6.28. Then C is
stable but close to instability. The point C is
surrounded by a large set of invariant curves
all the way from C to the ‘last KAM curve’.
This region contains many secondary islands
of higher order.

Figure 10. As figure 9 but forK = 6.334. Now the central periodic about C is unstable and is
surrounded by a chaotic domain. Further to the left and to the right are two bifurcated islands.
There are a ‘first KAM curve’ surrounding C and a ‘last KAM curve’. These curves are very close
to each other. ForK a little larger they disappear altogether and we reach the case of figure 8.

The destroyed KAM curves have now become cantori. The most important cantori, i.e. those
with the smallest holes, are in the region of the last KAM curves, i.e. near the resonance 1/16.
WhenK is slightly aboveKc = 6.3346 the chaotic domain around the unstable central periodic
orbit C communicates with the outer ‘chaotic sea’, through the holes of these cantori. Orbits
starting close to C stay for a long time in the inner chaotic domain before reaching the outer
‘chaotic sea’. In figure 11 we give the ‘stickiness time’ (i.e. the time required for an orbit to
go beyond a circle of radius 0.05 around C)as a function of the distance1y = y− yc from the
point C (xc, yc) upwards (forx = xc). (If we change the radius around C the results change
very little.) We see that in a region up to1y ≈ 0.0035 the stickiness time is roughly constant,
of the order oft = 106 iterations on the average, but with large variations. We call this region
the ‘inner stickiness region’. The linex = xc passes through higher order islands, in which
case there is no escape and the ‘stickiness time’ is infinite. The end of the inner stickiness
region is roughly at the island 1/15. Beyond that the stickiness time decreases on the average
outwards until it becomes quite small (figure 11).

Sometimes a point closer to C escapes faster than a point further away from C. This is
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Figure 11. The stickiness time as a function of the distance1y = y−yc upwards from the central
periodic orbit C(xc, yc) for K = 6.337 andx = xC .

Figure 12. The curvesνθ andνφ along a linex = xc from the central periodic orbit (xc, yc)
upwards (1y = y−yc) andK = 6.33, with a step 10−5 in1y. The orbits have been calculated for
105 iterations. The two curves coincide at invariant curves surrounding C. The secondary islands
are represented by an inverse U in theνφ curve and by horizontal straight line segments in theνθ
curve. The chaotic zones are represented by irregular variations ofνθ andνφ .

explained by the fact that the escape route through the holes of the cantori is very complicated
and the escape is not simply a diffusion outwards (Efthymiopouloset al 1997).

WhenK increases the whole curve of figure 11 moves downwards, i.e. the stickiness time
decreases in general.

We apply the method of the ROTOR, that we described earlier, along a line starting from
the central periodic orbit upwards (i.e. for fixedx and increasingy). In figure 12 we show both
curvesνθ andνφ for K = 6.33. Close to the centre (1y = y − yc ≈ 0) both curvesνθ andνφ
are very irregular, corresponding to the chaotic domain near C. Large irregularities also appear
on the right of the figure, corresponding to the large ‘chaotic sea’ outside the island. Between
these two chaotic regions the curvesνθ andνφ coincide, except at the islands, where the curve
νφ is of an inverse U shape, while the curveνθ has straight line segments. We see also some
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Figure 13. As figure 12 but forK = 6.334.

Figure 14. The curvesνθ andνφ for K = 6.3346 in a small interval around the island 1/16. The
step size of1y is 10−6. The orbits have been calculated for 106 iterations.

small secondary chaotic domains where both curvesνφ andνθ are irregular. The islands in the
chaotic domains are again characterized by inverse U shapes of theνφ curve and straight lines
of theνθ curve.

The region of regular invariant curves extends from1y = 0.0014 (first KAM curve) to
1y = 0.0059 (last KAM curve) and contains the islands from 1/13 to 1/21.

As K increases (figure 13 forK = 6.334) the ordered region decreases. Now only the
main secondary islands 1/16 and 1/17 and some high-order islands are in the ordered domain.

ForK = 6.3346 (figure 14) we have found the details of the curvesνθ andνφ around the
island 1/16. By calculating the orbits for larger times (106 iterations) and with a smaller step
size in1y (10−6). We see that the two curves continue to touch each other on the left of the
island 1/16, but they have been disconnected on the right of 1/16. Thus there are no KAM
curves on the right of the island 1/16. This has been verified by calculating an orbit close to
the island 1/16, which diffused outwards, reaching the large ‘chaotic sea’.

Thus, in order to check whether the curvesνθ andνφ coincide, or only come close to each
other, one has to calculateνθ andνφ more accurately, i.e. for longer times with a smaller time
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Figure 15. A sticky zone close to the island 1/16
surrounding the point C forK = 6.35. In this case there
are no ‘first’and ‘last’ KAM curves around C, but there is
still a sticky ring around C and around both islands on the
left and of the right of C.

step size. But we can only be certain that the last KAM curve in an interval has been destroyed
by finding an orbit that passes from one side of this interval to the other. For further details see
the recent paper of Vogliset al (1998). If we change the line (from C) along which we measure
the frequenciesνθ andνφ , the figures 12–14 change, but they remain qualitatively similar.
Namely the sequence of resonances is the same, although some islands may disappear if the
line passes through the chaotic domain close to an unstable periodic orbit between islands of
the same order. Furthermore, the new line crosses the same KAM curves and at these points
the valuesνθ andνφ coincide.

From figures 12–14 it follows, by extrapolation, that the first and last KAM curves coincide
and disappear at the critical valueK = Kc slightly larger than 6.3346. This is what is usually
called the ‘last KAM curve’ that separates (for smallerK) and joins (for largerK) two chaotic
domains. This last KAM curve has a noble rotation number.

We remark here, as in previous cases (Efthymiopouloset al 1997), that this is not the
simplest noble number, as one would expect by applying the conjecture of Greene (1979) for
the destruction of the last KAM curve.

For K larger thanKc there are no closed invariant curves around C. If we construct
diagrams like figures 12–14 we see that the curvesνθ andνφ never coincide. However, orbits
starting near C spend a long time in the neighbourhood of the island 1/16 before escaping to
the large ‘chaotic sea’. Thus a sticky zone remains in this region, which becomes less and less
prominent asK increases (cf figure 8 forK = 6.34 with figure 15 forK = 6.35).

On the sides of the central point C the two islands generated by bifurcation from C, when
C becomes unstable, still exist for even largerK. But the periodic orbits at the centres of
these islands also become unstable, by another period doubling bifurcation, and finally, after
an infinity of further period doubling bifurcations, all the periodic orbits produced from C,
directly or indirectly, become unstable. Thus all the islands in this region disappear. For even
largerK only small islands, independent of those generated by a cascade of periodic doubling
bifurcations from C, still remain. But their study is beyond the scope of this paper.

3. Evolution of the main island of the Hamiltonian (2)

We consider the evolution of the main island of the Hamiltonian (2) forω2
1 = 1.6,ω2

2 = 0.9,
h = 0.007 65, whileε is the nonlinearity parameter that varies from one case to another. This
evolution is very similar to that of the case of the map (1).
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Figure 16. A Poincaŕe surface of section around the central unstable periodic orbit C of the
Hamiltonian (2) forε = 4.41. Some islands (1/11, 1/13, 1/15, 1/17) are marked.

Figure 17. Part of the Poincaré surface of section for
ε = 4.405.

In the Hamiltonian cases we have used a fourth-order Runge–Kutta routine. As our
discussion is mainly qualitative no greater accuracy was needed. For example, the energy
was conserved with eight significant figures. The periodic orbits were located by a Newton–
Raphson algorithm.

For relatively smallε (ε 6 4.306) the central periodic orbit is stable and is surrounded
by a large set of invariant curves and periodic orbits. The distribution of periodic orbits for
various values ofε has been studied by Contopouloset al (1996).

The central periodic orbit C becomes unstable forε = 4.3061, and asε increases, all the
periodic orbits recede from C, while a chaotic domain develops around C. At the transition to
instability a bifurcation of two stable period-1 orbits takes place. These orbits are above and
below C, and they are surrounded by two islands of stability (figure 16).

The central chaotic domain increases withε and the two islands of stability increase in size.
At the same time the outer ‘chaotic sea’, that surrounds both these islands, increases inwards.
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Figure 18. The values ofνθ andνφ as functions ofx afterN = 104 iterations in the caseε = 4.405
(cf figure 17).

Figure 19. The ROTOR =νθ − νφ as a function ofx in the cases (a) ε = 4.41 and (b) ε = 4.415,
for N = 2× 104 iterations. In case (a) we mark also the points where the ROTOR remains zero
afterN = 106 iterations (in all other points the ROTOR is negative).

However, the outer and inner chaos do not communicate forε < 4.41. Forε = 4.405 there
are closed invariant curves (KAM curves) surrounding C and the two islands above and below
it. In figure 17 we give the detailed structure of the islands in the region between 3/37 and
1/17 forε = 4.405. The closed invariant curves are between the resonances 1/15 and 1/17.

A proof that there are in fact closed KAM curves in these regions is provided by the
diagrams ofνθ andνφ (figure 18, forε = 4.405) as in the case of the standard map (figures 12–
14). We see that the curvesνθ andνφ coincide, forN = 104 iterations, in some intervals
between the resonances 1/15 and 1/16 and also between 1/16 and 1/17. The reality of these
coincidences is verified by longer calculations (N = 105). In contrast the coincidences between
3/43 and 1/15 in figure 18 are not real, because the longer calculations show that the linesνθ
andνφ are not reaching each other in this region.

We also calculated the values ofνθ andνφ in the casesε = 4.41 andε = 4.415. As the
lines ofνθ andνφ are quite complicated, we give in figures 19(a) and (b) only the difference
νθ − νφ as a function ofx.

In the caseε = 4.41 (figure 19(a)) we see that if the number of iterations isN = 2× 104

there seem to be many values ofx for which the ROTOR is zero. However, ifN becomes larger
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(N = 106) only for two values ofx does the ROTOR remains zero. On the other hand for
ε = 4.415 andN = 2× 104 the ROTOR does not become zero between the resonances 1/16
and 1/17 (figure 19(b)), therefore the inner and outer chaos communicate. There is only some
delay in this communication, due to the cantori that exist in the region between the resonances
1/15 and 1/17.

Therefore, the destruction of the invariant curves surrounding the central point C occurs
for ε slightly larger thanε = 4.41. The last KAM curves appear between the resonances 1/16
and 1/17 (figure 17). We conclude that the destruction of the invariant curves around C in that
case of the Hamiltonian (2) follows a similar pattern as in the case of the map (1).

4. Evolution of the main island of the Hamiltonian (3)

A different pattern of creation of chaos is when the central orbit becomes unstable by an
‘inverse’ (subcritical) bifurcation (Contopoulos 1983a).

In this case the bifurcating family is unstable and exists for parameter values for which
the central orbit is stable.

Such cases appear in the Hamiltonian (3) (Contopouloset al 1994) for a fixed value of
the energy (h = 1). In this case the cental periodic orbit has an infinity of transitions from
stability to instability and vice versa, as the perturbationε increases to infinity. Ifε is positive
there is never any escape to infinity. The value ofh is equal to unity.

Whenever we have a transition from stability to instability for increasingε, there is a
bifurcation of equal period periodic orbits, which is direct, i.e. the bifurcating family is stable
and exists for valuesε larger than the bifurcation valueεB , while the central family is unstable
for ε larger thanεB (but not very large). For example, this occurs whenε goes beyond
εB = 1.457. Similar direct bifurcations appear forεB = 4.131,εB = 8.098 etc. In all these
cases the bifurcation scenario is the same as in the case of the map (1) and the Hamiltonian
(2). When the central periodic orbit (y = ẏ = 0) becomes unstable a chaotic domain develops
around it, which grows larger asε increases. At the same time a large ‘chaotic sea’, outside
the island, grows inwards and beyond a certain value ofε = εc > εB the inner and outer chaos
join and destroy the central island. Only two secondary islands remain above and below the
centre (i.e. fory = 0, andẏ > 0 and symmetrically foṙy < 0; figure 4 of Contopouloset al
1994).

The situation is different at a bifurcation from instability to stability, e.g. forε′B = 2.154.
Then the central orbitO becomes again stable and forε > ε′B two unstable orbits of equal
period appear foṙy = 0, y > 0 (O2) and a symmetric pointy < 0 (O1, figure 20).

In order to study the destruction of the island of stability around the centre it is best to
considerε decreasing through the valueεB . As ε decreases the island aroundO decreases in
size but no chaotic domain appears aroundO. In fact there are only some higher order periodic
orbits inside the island, forming rings of stable and unstable points, and small chaotic zones
appear around the unstable points. This phenomenon is so general that it does not require a
detailed description here.

The inner asymptotic curves fromO1 andO2, that limit the island aroundO, produce
extremely small regions of chaos near the borders of the island, while the outer asymptotic
curves produce a large chaotic domain (figure 20, forε = 2.5). However the inner chaotic
zone communicates with the outer chaos.

A remark concerning the nomenclature is in order here. The asymptotic curves of the
orbitsO1 andO2, intersect at heteroclinic points, likeH andH ′. However whenε decreases
below εB the pointsO1 andO2 merge at the centreO, and the points of intersection of the
asymptotic curves are called homoclinic points.
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Figure 20. The asymptotic curves from the unstable
periodic orbitsO1 andO2 in the Hamiltonian (3) forε = 2.5
andh = 1. The outer asymptotic curves intersect at many
heteroclinic points likeH and H ′. The arrows follow
an outer unstable asymptotic curve fromO2. The inner
asymptotic curves surround the stable periodic orbitO and
the central island around it.

Figure 21. The stickiness timeT : (a) as a function ofy along they-axis, and (b) as a function of
ẏ along theẏ-axis, forε = 2.5.

In order to find the stickiness around the central island in the caseε = 2.5 we calculate,
first, the time required by various orbits to cross a circle of radius 0.8 around the centre and we
call it the ‘stickiness time’. A change in this radius does not change our results appreciably.

In figure 21 we show the stickiness timeT as a function ofy andẏ. The stickiness time is
infinite inside the central island and inside a large island above it (figure 21(b)). Between these
two islands the stickiness time is on the average constant (T ≈ 10), but with large variations.
Close to the second island,T increases considerably and beyond it decreases again, and reaches
very small values beyonḋy = 0.71.

Along they-axis the stickiness beyondO2 at the end of the main island (y ≈ 0.2) has
again an average valueT ≈ 10, with large variations, and reaches very small values beyond
y = 0.73 (figure 21(a)). If we change the direction along which we measure the stickiness
times we find figures qualitatively similar to figures 21(a) and (b).

In both figures 21(a) and (b) there are some flat regions with very small values ofT

(especially betweeny = 0.4 andy = 0.5). These are the regions of fast escape through
openings of the stable asymptotic curves (Efthymiopouloset al 1997).
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Figure 22. The stickiness timeT as a function ofy along they-axis for (a) ε = 2.153 and (b)
ε = 2.150. In both cases the central orbitO is unstable.

As ε decreasesO1 andO2 approach each other and the inner asymptotic curves tend to
a separatrix, but the size of these curves tends to zero, as the whole island aroundO tends
to zero. The periodic orbitO becomes unstable asε decreases belowε′B = 2.154 and the
stickiness around it is small.

The stickiness in the case of inverse bifurcations is not due to cantori surrounding the
central island. Such cantori should exist for smaller values ofε (0< ε < εB = 1.457), when
the central orbit is stable, and forε somewhat larger thanεB (as in figures 8 and 15). However,
for values ofε as large asε = 2.1, or larger, these cantori move far away from the centreO.
They have large gaps and thus they do not produce appreciable stickiness around them. The
stickiness near the boundaries of the main island is due mainly to the usual delay of escape of
the iterates of an orbit in the neighbourhood of the unstable periodic orbitsO1 andO2 from
these orbits and from their asymptotic curves, if the unstable eigenvalues of these orbits are
not much larger than 1 (figure 21). In our examples any cantori between the unstable orbits
O1 andO2 are congested in a very small region near the boundary of the island.

This kind of stickiness also appears forε < ε′B , when the central orbitO is unstable. In
figure 22 we give the stickiness timeT as a function ofy for two values ofε, smaller than but
close toε′B , namely (a) ε = 2.153 and (b) ε = 2.150. In both casesT is maximum near the
centre and decreases outwards. The central maximum is larger in the first case, which is very
close to the critical valueε′B = 2.154. In this case the eigenvalue of the unstable orbitO is
close to 1, while it is much larger in the second case. As a consequence the stickiness nearO

is larger in the first case than in the second. However, if we reduceε still further and approach
the critical valueεB = 1.457 we have again larger stickiness, due to cantori (as we described
in the previous section).

Similar results appear at other transitions from stability to instability, asε decreases
through higher order critical values, likeεB = 5.506,εB = 10.100 etc.

5. The evolution of a major island in the Sitnikov problem

A similar phenomenon of an abrupt disappearance of an island by the merging of two outer
unstable orbits, without having first a transition to instability of the central periodic orbit,
appears in the Sitnikov problem (Sitnikov 1960).

The Sitnikov problem refers to the motion along thez-axis of an infinitesimal particle,
moving in the field of two equal masses (primaries) that describe ellipses around their common
centre of mass (origin in thex, y plane) with eccentricitye.
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Figure 23. The Poincaŕe surface of section (z, ż) around the unstable pointO for e = 0.847.

The equation of motion is

z̈ + (r2 + z2)−3/2z = 0 (6)

wherez is the distance of the massless body from the barycentre of the primaries andr = r(t)
is the distance of the primaries from the barycentre, which is found by solving the Kepler
problem and is a known function of timet .

There exist many theoretical studies concerning the Sitnikov problem (e.g. Moser 1973,
Liu and Sun 1990, Wodnar 1991 and 1993, Hagel 1992) and also numerical experiments
where Poincaŕe surfaces of section for different values of the eccentricity of the primaries
were constructed (e.g. Dvorak 1993). In another numerical investigation the stability and the
stickiness around the central fixed point atz = ż = 0 was studied and is described in detail
in Dvorak (1998). This orbit has many transitions from stability to instability and vice versa
whene approaches 1 (Alfaro and Chiralt 1993).

In this paper we explore the stickiness around a resonant periodic orbit 2:1, when this orbit
becomes unstable, by an inverse bifurcation, ase decreases through a critical valuee′ = 0.847.
We consider a Poincaré surface of section giving the values ofz andż when the primaries are
at pericentre. This orbit is represented by two symmetric points (+z,−z, ż = 0) on thez-axis.

The 2:1 orbit exists for all values ofe. For smalle > 0 it is stable and each point is
surrounded by an island of stability, which is inside the ‘mainland’ of closed invariant curves
around the centre. Beyonde ≈ 0.04 this stable island is separated from the ‘mainland’ and the
chaotic region around the island joins the chaotic regions outside and thus escapes are possible.

For larger eccentricitiese > eB = 0.55 the 2:1 orbit becomes unstable by a direct
bifurcation generating stable 4:1 islands, that exist fore somewhat larger thaneB .

For even largere = e′B = 0.847 the 2:1 orbit (O) becomes again stable by an inverse
bifurcation. The periodic orbitO is unstable fore < e′B (figure 23) and stable fore > e′B
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Figure 24. The Poincaŕe surface of section (z, ż) around the stable pointO for e = 0.8471.There
are two unstable pointsO1andO2 on the left and on the right ofO.

(figure 24). In the second caseO is surrounded by an island of stability which is limited by
two unstable orbitsO1 andO2 on thez-axis. The situation is very similar to the case of the
Hamiltonian (3) studied above (figure 20) except in one important way: in the present case the
orbits can escape to infinity, while in the Hamiltonian (3) there are no escapes. In particular,
the asymptotic curves of the orbitO in figure 23 extend to infinity.

Similarly, the outer asymptotic curves of the orbitsO1 andO2 of figure 24 extend to
infinity. However, the inner asymptotic curves (left fromO2 and right fromO1), intersect each
other at infinite points and generate a very thin chaotic layer close to the border of the island.

Inside the island surroundingO there are higher order stable and unstable periodic orbits
and thin chaotic layers that we cannot see in figure 24.

In figure 25 we give the stickiness timeT around the pointO, defined as the time required
by an orbit starting at (z, ż = 0) to go beyond a circle of radius 3.0 around the barycentre. (If
we change this radius the results do not change appreciably.) The stickiness time is given in
three cases:e1 = 0.848> e′B , e2 = 0.846< e′B ande3 = 0.84. In the first case the stickiness
time goes to infinity at the borders of the island. Somewhat away from the island on the left
and on the right of figure 25 the stickiness curve is approximately a straight line. In these
regions the stickiness time increases exponentially as the distance from the island decreases.
However, very close to the island, the increase ofT is superexponential. This phenomenon is
generic and it has been observed in various dynamical systems (e.g. Contopouloset al 1997).

As e decreases belowe′B (second case) the orbitO is unstable, but whene is close toe′B
the eigenvalue ofO is only slightly larger than 1, and the escape from the neighbourhood of
O is slow (casee = e2 = 0.846).

When e becomes smaller the eigenvalue ofO is larger and the escape from the
neighbourhood ofO is faster. Thus the whole stickiness curve fore = 0.84 is lower than
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Figure 25. The stickiness timeT as a function of the initial distancez of an orbit forż = 0.

for e = 0.846.
This behaviour is similar to that of the Hamiltonian (3) (figures 21 and 22) but in the

present case the noise in the stickiness curves is much smaller.

6. Conclusions

(1) We have found two basic types of stickiness (a) for direct (supercritical) pitchfork
bifurcations and (b) for inverse (subcritical) bifurcations. (a) In direct bifurcations there is
stickiness near the boundary of a stable island surrounding a periodic orbit at the centre of
the island. When this orbit becomes unstable, as the perturbation increases, it develops a
chaotic domain around it, but for a certain interval of values of the perturbation this chaotic
domain does not communicate with the outer ‘chaotic sea’. For a larger perturbation
the KAM curves surrounding the central orbit are destroyed and become cantori with
small gaps. Then the inner and the outer chaotic domains communicate but there is still
stickiness for appreciable times. (b) In inverse bifurcations the stickiness is due mainly
to the difficulty of escape from the neighbourhood of an unstable periodic orbit when its
eigenvalue is not large. In this case an island of stability is limited by two unstable periodic
orbits, that generate stickiness around them. When the perturbation decreases the island
shrinks and disappears and the central orbit becomes unstable. Then there is stickiness
around this orbit. In this case there are no cantori with small gaps.

(2) Our results seems to be generic, i.e. they are qualitatively similar in quite different
problems. We have considered stickiness in direct bifurcations of the standard map and of
a Hamiltonian with a cubic nonlinearity, and inverse bifurcations in a Hamiltonian with a
quartic nonlinearity and in the Sitnikov problem. The last two problems also have direct



5232 G Contopoulos et al

bifurcations, where the first type of stickiness is clearly seen.
(3) In our problems we have found direct bifurcations when the perturbation increases and

inverse bifurcations when the perturbation decreases. However, in other problems the
opposite is true. Thus the important distinction is not whether the perturbation increases
or decreases, but whether a bifurcation is direct or inverse.

(4) Finally there are some quantitative differences in the stickiness time for cases with escapes
but not as regards the main qualitative properties of direct and inverse bifurcations.
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